
Technical Appendix of “Estimating HANK: Macro Time

Series and Micro Moments”∗

Reca Sarfati†

December 1, 2019

Abstract

We show how to use sequential Monte Carlo methods, which can be parallelized, to

estimate a heterogeneous agent New Keynesian (HANK) model featuring both nominal

and real rigidities. We demonstrate how the posterior distribution may be specified

as the product of the standard macro time series likelihood and a prior enforcing sev-

eral steady state distributional moments, including the average marginal propensity to

consume and fraction of agents with zero liquid wealth. We ask whether there exists

a tension between fitting macroeconomic time series and distributional moments, ulti-

mately finding there is none. For instance, even after relaxing the prior, the posterior

based solely on macro time series features a marginal propensity to consume well below

one, broadly in line with existing microeconomic evidence.

This technical appendix is split into two sections. Appendix A discussions the esti-

mation approach. Appendix B details the augmentation of the time series likelihood

function so as to fit both micro and macro data.

Keywords: Heterogeneous agent New Keynesian models, adaptive algorithms, Bayesian

inference, online estimation, sequential Monte Carlo methods

JEL Codes: C11, C32, C53, E32, E37, E52

∗This is the technical appendix of the working paper, “Estimating HANK: Macro Time Series and Micro
Moments,” joint with Sushant Acharya, Michael Cai, Marco Del Negro, Keshav Dogra, and Ethan Matlin.
While part of a joint work, I have written this appendix solely myself.
†Federal Reserve Bank of New York (email: rebecca.sarfati@ny.frb.org). The views expressed in this

paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of
New York nor the Federal Reserve System.

A Sequential Monte Carlo Algorithms

Computing moments of the posterior distribution of a dynamic stochastic general equilib-

rium (DSGE) model is often analytically intractable, necessitating the use of simulation

techniques. To date, the prevailing tool for Bayesian estimation has been the random walk

Metropolis-Hastings (RWMH) algorithm. However, the complexity of many modern DSGE

models renders RWMH ineffective, for three primary reasons. First, RWMH can be im-

practically slow; when sequences of model parameter draws exhibit high serial correlation, a

larger number of draws is demanded to ensure proper convergence to the posterior, greatly

extending overall runtime. By construction, RWMH cannot be executed in parallel—as the

transition process is Markov, each iteration must occur sequentially. Secondly, RWMH is

susceptible to getting stuck at local modes, in turn failing to explore the full posterior distri-

bution by the termination of the algorithm. Finally, RWMH is very inflexible in its execution:

following new realizations of data or minor modifications to one’s model, an estimation must

be relaunched from scratch. This rigidity hampers both the model development process and

practical deployment of DSGE models for regular forecasting and policy analysis.

Sequential Monte Carlo (SMC) methods are adaptable, parallelizable tools to conduct

Bayesian inference of posterior distributions, solving for aforementioned limitations of the

RWMH algorithm. Heavily distributing the computational load across computing cores,

SMC methods can produce more accurate estimates of posterior moments in a fraction of

the time. Further, SMC methods can easily be modified so as to enable “online” estimation,

as discussed in another paper of ours, Cai et al. (2019). Herbst and Schorfheide (2014) and

Cai et al. (2019) have also shown SMC methods to be robust to multimodality.

Appendix A begins with a formal exposition of the estimation problem (Section A.1),

reviews the standard SMC algorithm (Section A.2), describes our generalized tempering

approach as put forth in Cai et al. (2019) (Section A.3), and discusses the adaptive tuning of

parameters (Section A.4). Finally, Section A.5 discusses the use of Chandrasekhar recursions

for fast computation of the likelihood.

1

A.1 Problem Statement

Given data Y , prior p(θ), and the likelihood p(Y |θ), we wish to compute moments of the

posterior distribution p(θ|Y) of static parameter θ, with support Θ. The posterior density

is given by

p(θ|Y) =
p(Y |θ)p(θ)
p(Y)

, where p(Y) =

∫
p(Y |θ)p(θ)dθ

The function p(Y |θ)p(θ) can be evaluated analytically for linearized DSGE models with

Gaussian innovations and regular prior densities. However, the normalization constant∫
p(Y |θ)p(θ)dθ lacks a closed-form expression and can be very costly to compute. Numerical

integration techniques, for instance, suffer from a “curse of dimensionality,” whereby the

requisite computation time to proffer a desired degree of precision increases exponentially

with the dimension of the problem. We thus aim to approximate the posterior expectations

of θ and functions h(θ) with Monte Carlo simulation methods, whose convergence rates are

independent of the dimensionality of θ.

A.2 Overview of SMC Algorithm

This section provides an overview of the structure of the SMC algorithm. Those seeking

even greater detail may refer to Chopin (2002), Del Moral et al. (2012), Creal (2012), and

Herbst and Schorfheide (2014).

SMC conjoins pieces of importance sampling and modern Markov Chain Monte Carlo

methods. Recalling the construction of classic importance sampling, let π(·) be an arbitrary

density to estimate. We seek to approximate π(·) with another density g(θ) that is easier to

sample from. Letting θi
iid∼ g(θ) for i = 1, ..., N , and Z be a normalization constant, we have

the identity

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

1

Z

∫
Θ

h(θ)w(θ)g(θ)dθ, where w(θ) =
f(θ)

g(θ)
, π(θ) =

f(θ)

Z

2

Foundational to the motivation of SMC is the Monte Carlo average

h =
N∑
i=1

W̃ ih(θi)
a.s.−→ Eπ[h(θ)] as N →∞

where the W̃ i are normalized importance weights of parameter draws θi

W̃ i =
w(θi)∑N
j=1w(θj)

Critically, the accuracy of the approximation is dependent on the “closeness” of the function

g(·) to f(·). Yet, finding such a g(·) is typically very difficult. SMC methods thus aim to

construct a sequence of bridge distributions {πn(θ)}Nφn=0 converging to the target posterior:

πNφ(θ) = π(θ). In the standard SMC algorithm, the bridge posterior distributions πn(θ) are

given by the stage-n likelihood functions

πn(θ) =
pn(Y |θ)p(θ)∫
pn(Y |θ)p(θ)dθ

SMC methods represent each intermediate posterior density πn(θ) by a swarm of particles

{θin,W i
n}Nn=0, such that the Monte Carlo average

hn,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπn [h(θn)] as N →∞, for each n = 0, ..., Nφ.

The SMC algorithm iterates from n = 0 to Nφ. At n = 0, we initialize the particle cloud

{θi0, 1}Ni=1 with values θi0 drawn iid from the prior density p(θ), and weights W i
0 set to 1.

There are three steps within each stage n of the SMC algorithm: (1) correction: reweight-

ing stage n − 1 particles to reflect the new density of stage n, (2) selection: resampling

particles by weight so as to avoid degeneracy, and (3) mutation: propagating particles for-

ward using a Markov transition kernel, so as to update particle values in reflection of the

stage-n bridge density. When n = Nφ, the likelihood will have converged to its true value,

3

pNφ(Y |θ) = p(Y |θ). The path of the likelihood sequence depends on the tempering strategy;

we utilize an adaptive tempering schedule for this paper, as discussed in Section A.3. A

generic implementation of the algorithm is detailed below.

Algorithm 1: Basic SMC Algorithm

1. Initialization. (φ0 = 0). for i = 1, ..., N do

Draw initial particles from the prior: θi1
iid∼ p(θ)

Initialize weights: W i
1 ← 1

end

2. Recursion. for n = 1, ..., Nφ do

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in =
pn(Y |θin−1)

pn−1(Y |θin−1)

and normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, ..., N

(b) Selection (Optional). Resample swarm of particles {θin−1, W̃
i
n}Ni=1 by normalized

weights. Denote resampled swarm by {θ̂in−1,W
i
n}Ni=1, where W i

n = 1 for all i.

(c) Mutation. Propagate particles {θ̂in−1,W
i
n}Ni=1 via NMH steps of a Metropolis-Hastings

algorithm with transition density θin ∼ Kn(θn|θ̂in; ζn) and stationary distribution πn(θ).

An approximation of Eπn [h(θ)] is given by

hn,N =
1

N

N∑
i=1

h(θin)W i
n

end

3. For n = Nφ (φNφ = 1), the importance sampling approximation of Eπ[h(θ)] is given by:

hNφ,N =
N∑
i=1

h(θiNφ)W i
Nφ

One will notice the mutation step may be performed in parallel across particles. The

mutation step is also the most computationally intensive; the likelihood function must be

4

evaluated at each Metropolis-Hastings step. The number of φ-stages Nφ and number of

Metropolis-Hastings steps NMH are tuning parameters to be calibrated. The vector ζn com-

prises the tuning parameters of the Metropolis-Hastings algorithm, discussed in Section A.4.

A.2.1 Selection

The equalizing of particle weights solves for issues of degeneracy, increasing the accuracy of

importance sampling approximations in ensuing stages. However, resampling particles comes

at the cost of adding noise to the Monte Carlo approximation, and thus it is inadvisable to

resample unnecessarily. To determine the stages at which to resample, it is common to use

a threshold rule based on the variance of the particle weights. As in Herbst and Schorfheide

(2014), we compute the “effective sample size”

ÊSSn = N/

(
1

N

N∑
i=1

(W̃ i
n)2

)

and pick a threshold N , such that we resample during any period where ÊSSn < N .

A.2.2 Mutation

The mutation step enables particles to adjust to the new posterior density by taking Metropolis-

Hastings steps NMH from their present values at the start of the period. Were particles never

to mutate, they would remain fixed in value once drawn from the prior during initialization,

reducing the SMC algorithm to classic importance sampling. As noted earlier, it is very

difficult to choose a “close” function to the true posterior; as such, the prior is generally a

poor distribution for approximating the posterior. The critical distinction in performance

between SMC and vanilla importance sampling is thus the mutation of particles.

Several tuning parameters and modifications may increase the probability of accepting

a proposed mutation, such as the number of steps taken, NMH , as well as grouping the pa-

rameters θ into subsets and allowing subsets to mutate, blockwise. We modify the mutation

5

step as in Herbst and Schorfheide (2014) to make the proposal distribution adaptive, such

that the mean and covariance matrix during the nth iteration are functions of the particles

from the preceding iteration, n− 1. Further, as in Kohn et al. (2010), we utilize a mixture

density for the proposal distribution. The amalgamation of these adjustments is explicated

in the following pseudocode.

Algorithm 2: Mutation Step (Step 2. (c) of SMC Algorithm)

1. Parameter blocking.
· Draw ri ∼ U [0, 1] corresponding to each parameter θi, n = 1, ..., N .

· Sort θi by ri. Let the b-th block of parameters, denoted θn,b, consist of the sorted
parameters (b− 1) ·Nblocks, ..., b ·Nblocks.

· Define θ∗b and Σ∗b to be the partitions of θ∗ and Σ∗ corresponding to parameter block θn,b.

2. Mutation steps. for n = 1, ..., NMH do
for b = 1, ..., Nb do

(a) Denote θin,b,m as parameter values for θin,b on the m-th MH step. Let θin,b,0 ← θin−1,b

(b) Generate proposal draw ϑb from the mixture distribution

ϑb | (θin,b,m−1, θ
i
n,−b,m, θ

∗
b ,Σ

∗
b)

∼ αN
(
θin,b,m−1, c

2Σ∗b
)

+
1− α

2
N
(
θin,b,m−1, c

2diag(Σ∗b)
)

+
1− α

2
N
(
θ∗b , c

2Σ∗b
)

denoting the density of the mixture proposal by q(ϑb|θin,b,m−1, θ
i
n,−b,m, θ

∗
b ,Σ

∗
b)

(c) Define the acceptance probability

α = min

{
1,

pφn(Y | ϑb, θin,−b,m)p(ϑb, θ
i
n,−b,m)/q(ϑb | θin,b,m−1, θ

i
n,−b,m, θ

∗
b ,Σ

∗
b)

pφn(Y | θin,b,m−1, θ
i
n,−b,m)p(θin,b,m−1, θ

i
n,−b,m)/q(θin,b,m−1 | ϑb, θin,−b,m, θ∗b ,Σ∗b)

}

(d) Draw r ∼ U [0, 1].

if r < α then
Accept proposed mutation of block: θin,b,m ← ϑb

else
Reject proposed mutation of block: θin,b,m ← θin,b,m−1

end

end

end

3. Set values to those of last MH step: θin,b ← θn,b,M , for b = 1, ..., Nblocks.

6

A.3 Tempering Schedules: Likelihood, Data, and Generalized

We have so far remained silent on how to construct the sequence of bridge posterior distri-

butions {πn}
Nφ
n=0. This section discusses two methods of tempering—likelihood and data—

before describing their unification in the “generalized” tempering approach, as put forward

in another paper of ours, Cai et al. (2019).

A.3.1 Likelihood Tempering

In likelihood tempering, the parameter φn determines the weight of the likelihood function

in the evaluation of the bridge posterior

πn(θ) ∝ p(Y |θ)φnp(θ)

where φn follows a monotonically increasing path from 0 to 1 (i.e. φ0 = 0 and φNφ = 1).

The question of tempering is thus how to tune the path of φn. An advantage of likelihood

tempering is that one can design bridge distributions to be arbitrarily close to one another,

which may be useful so as to avoid rapid decay of the effective sample size. For instance, it is

advisable to introduce the likelihood function slowly during initial stages, so as to avoid many

particles being assigned near-zero weight during the correction step, since the likelihood may

have a very different shape from the prior. The trade-off of having too many stages, Nφ, is

that each added stage requires additional (costly) evaluations of the likelihood function.

The φ-schedule may be chosen and fixed a priori, or determined adaptively over the

course of the SMC algorithm. Herbst and Schorfheide (2014) propose the following tempering

schedule

φn =

(
n− 1

Nφ − 1

)λ
where λ is a parameter to be calibrated (the tuning of which is discussed in their paper).

Larger values of λ will keep successive bridge distributions closer when n is small and farther

apart when n is close to Nφ. The value λ = 2 is recommended for DSGE model applications.

7

A.3.2 Data Tempering

Data tempering, by contrast, gradually adds sets of observations to the likelihood function.

That is,

pn(Y |θ) = p(y1:bφnT c | θ)

where the function bφnT c returns the largest time step less than or equal to φnT , and φn

again follows a path from 0 to 1. Data tempering has intuitive applications to time series

contexts, but the proximity of successive bridge distributions is limited by the coarseness of

the data, restricting the extent to which one can temper to avoid particle degeneracy.

A.3.3 Generalized Tempering

“Generalized” tempering encompasses both data and likelihood tempering. Consider ab-

stractly drawing from the posterior

π̃(θ) ∝ p̃(Ỹ | θ)p(θ)

where π̃(θ) is permitted to vary from the true posterior π either by a different sample of data

(Ỹ versus Y), a distinct model (p̃(Y |θ) versus p(Y |θ)), or both. The likelihood function at

stage n may be expressed as

pn(Y |θ) = [p(Y |θ)]φn [p̃(Ỹ |θ)]1−φn

To temper the likelihood alone, one may set p̃(·) = 1. To temper the data alone, one

may set p̃(·) = p(·), Y = y1:bφmT c, and Ỹ = y1:bφm−1T c, where the schedule {φm}
NφT
m=1 may be

specified as desired. The generalized tempering approach allows for the additional flexibility

of “smoothing” between data realizations. This is particularly useful during periods for

which the inclusion of the data sample y1:bφm−1T c : y1:bφmT c has a significant effect on the

likelihood, such as during the onset of a recession.

8

A.4 Adaptive Choice of Tuning Parameters

The transition kernel in Algorithm 1 consists of the following parameters ζn to be calibrated

ζn = {ĉn, θ∗n,Σ∗n}

As in Herbst and Schorfheide (2014), we choose the tuning parameters ĉn, θ
∗
n,Σ

∗
n adaptively.

The parameter ĉn determines the scaling factor of the covariance matrix, and is selected so

as to yield an acceptance rate of approximately 25%, as discussed in Geweke and Durham

(2019). The selection of these parameters is detailed below.

Algorithm 3: Adaptive Particle Mutation (Before Step 2. (c) of SMC Algorithm)

1. Compute importance sampling approximations of Eπn [θ] and Vπn [θ] to specify θ∗n and Σ∗n:

θ∗n =
N∑
n=1

W̃ i
n · θin−1, Σ∗n =

N∑
n=1

W̃ i
n · (θin−1 − θ∗n) · (θin−1 − θ∗n)T

2. Compute the average empirical rejection rates R̂n−1(ζ̂n−1) of the mutation step in iteration

n− 1.

3. Compute the scaling factor ĉn:

ĉn = ĉn−1f(R̂n−1(ζ̂n−1))

where, as in Herbst and Schorfheide (2014), Algorithm 10, we define f(·) as

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)

4. return: ζ̂n = {ĉn, θ∗n,Σ∗n}

The final parameter to be chosen is φn. As in Cai et al. (2019), we may choose φn

adaptively, so as to target a particular rate of degeneration of the effective sample size.

9

Pursuant to this, we define:

wi(φ) = [p(Y |θin−1)]φ−φn−1 , W i(φ) =
wi(φ)W i

n−1

1
N

∑N
i=1 w

i(φ)W i
n−1

, ÊSS(φ) = N/

(
1

N

N∑
i=1

(W̃ i
n(φ))2

)

We choose the parameter φ as follows:

f(φ) = ÊSS(φ)− ρÊSSn−1 = 0

and choose ρ to capture the permissible rate of deterioration in effective sample size. An

optimized algorithm for efficient root-finding is given below.

Algorithm 4: Adaptive Tempering Schedule (Before Step 2.(a) of SMC Algorithm)

1. Initialization. Initialize variables: j = 2, n = 2, φ1 = 0, φ̃ = 0

2. Construct vector of incremental upper bounds.
~̂
φ = {φ̂1, ..., φ̂N−1, φ̂N}

3. Root finding. while φn < 1 do

f(φ) = ESS(φ)− ρESSn−1

while f(φ̃) ≥ 0 and j ≤ N do

φ̃ = φ̂j
j = j + 1

end

if f(φ̃) < 0 then

φn = root(f, [φn−1, φ̃])

else
φn = 1

end

n = n+ 1

end

4. return: φn

10

A.5 Chandrasekhar Recursions for Fast Likelihood Computation

When estimating linearized DSGE models with Gaussian innovations, the evaluation of the

Kalman filter likelihood typically dominates other parts of the algorithm in contribution to

total runtime. Likelihood evaluations of HANK models are especially costly; the standard

Kalman filter involves many operations with k×k matrices, where k is the number of states.

Consequently, as the number of states grows, so too does the runtime of the likelihood. This

is concerning for our purposes; in the state-space representation of our HANK model, the

state vector includes the full discretized wealth distribution and individual decision variables.

The Chandrasekhar recursions, outlined in Morf (1974), reconfigure the algorithm to

instead operate on n× n matrices, where n is the number of observables. Abstracting away

the cost of the fixed set of operations C shared by both algorithms, the original Kalman

filter has a runtime on the order of O(k4 +k3n+C), while the Chandrasekhar recursions run

in O(n3 + kn2 + C). DSGE models, and HANK models in particular, are especially suited

for the use of these recursions, as the number of states tends to far exceed the number of

observables (k >> n).

This section will walk through details of implementation. For a more thorough treat-

ment and proofs of validity, consult Morf (1974). For empirical performance, Herbst (2015)

compares the runtime of both algorithms using four DSGE models of varying scale.

We take as input the state-space representation of our model,

st = Tst−1 +Rεt, εt ∼ N(0, Q)

yt = Zst +D + ηt, ηt ∼ N(0, H)

where st is the k-length vector of states, T is the k × k transition matrix, εt is the vector

of structural shocks, and R is the shock transmission matrix. In the measurement equa-

tion, yt is the length-n vector of observables, with measurement error vector ηt such that

E[εtη
′
t] = 0. To use the Chandrasekhar recursions, we further assume (1) the system matrices

11

(T,R,Q, Z,D,H) are time-invariant, and (2) the process {st}Tt=1 is stationary. This means

the algorithm does not allow missing observations, as the system matrices are not permitted

to change in size over the time sample. Our goal is to compute the log-likelihood L(y1:T |θ).

Algorithm 5: Chandrasekhar Recursions

Inputs: Data: y1:T , Transition: T,R,Q, Measurement: Z,D,H

1. Initialization.

(a) Solve the discrete Lyapunov equation P̄ = T P̄T ′ +RQR′ for the unconditional

variance, P̄ .

(b) ŝ1|0 ← 0

(c) K1 ← T P̄Z ′, F1 ← ZP̄Z ′ +H

(d) W1 ← K1, M1 ← −F−1
1

2. Iteration. for t = 1, ..., T do

(a) Compute forecast error νt:

νt = yt −D − Zŝt|t−1

(b) Compute intermediate likelihood calculation of νt with respect to N(0, Ft):

Lt = n ln(2π) + ln |Ft|+ ν ′tF
−1
t νt

(c) Compute ŝt+1|t:

ŝt+1|t = T ŝt|t−1 +KtF
−1
t νt

(d) Update forecast error variance:

Ft+1 = Ft + ZWtMtW
′
tZ
′

(e) Update Kt+1 (note: Kalman gain given by Kt+1F
−1
t+1):

Kt+1 = Kt + TWtMtW
′
tZ
′

(f) Compute Wt+1 and Mt+1:

Wt+1 = (T −KtF
−1
t Z)Wt

Mt+1 = Mt +MtW
′
tZ
′F−1
t ZWtMt

end

3. return: L(y1:T |θ) = −1
2

∑T
t=1 Lt

12

B Fitting Micro and Macro Data

B.1 Augmenting Time Series Likelihood

We have two datasets against which we hope to fit our HANK model: macro time series

data Y m and micro distributional data Y d. The macro time series data (Y m = ym1:T) consists

of the set of observables used in standard DSGE model estimation. We include the same

observables as Smets and Wouters (2007) for clarity of message. The likelihood p(ym1:T |θ)

is similarly the standard macro time series likelihood, which may be computed using the

Kalman filter or Chandrasekhar recursions (provided there are no missing observations).

We also want the model to fit micro distributional data, Y d. We target a set of moments

m̄(Y d) and affiliated standard deviations σd from the steady state cross-sectional income and

liquid wealth distributions. The moments m̄(Y d) are chosen from Kaplan et al. (2018), and

include the fraction of zero-liquid wealth agents, average marginal propensity to consume,

and cross-sectional variance in income.

To date, there have been several approaches to combining micro and macro data in the

estimation of HANK models (Chang et al. (2018); Liu and Plagborg-Møller (2019), etc.).

Our approach differs in that we are not seeking to fit repeated cross-sections of micro data,

but rather only a set of moments from the steady state distribution. Taking the approach of

Del Negro and Schorfheide (2008), we construe the micro moments as providing a form of a

priori knowledge about a subset of the parameters, and define the posterior distribution of

θ to be

p(θ|Y m, Y d) ∝ p(ym1:T |θ)︸ ︷︷ ︸
likelihood

· p(Y d|θ)p(θ)︸ ︷︷ ︸
prior

The prior p(θ) is broadly specified to be the same as Smets and Wouters (2007) for parameters

which do not affect the steady state. The “penalty function” p(Y d|θ) is constructed as follows

log p(Y d|θ) = −1

2
(log m̄(θ)− log m̄(Y d))′Σ−1

d (log m̄(θ)− log m̄(Y d))

13

where m̄(θ) are the moments implied by the parameters of our model, and Σd is a sparse

(positive definite) matrix with the vector of empirical standard deviations σ2
d along the

diagonal.

B.2 Assessing Trade-offs in Model Fit

We wish to construct a measure of the “trade-off” of fitting macro and micro data. Using

our earlier formulation, we may introduce scaling parameters Υm and Υd, which determine

the relative weights of the standard macro time series likelihood p(ym1:T |θ) and penalty term

p(Y d|θ) in the construction of the posterior, respectively:

p(θ|Y m, Y d) ∝ p(ym1:T |θ)Υm︸ ︷︷ ︸
likelihood

· p(Y d|θ)Υdp(θ)︸ ︷︷ ︸
prior

When Υd = 0, we return to the standard statement of the posterior distribution, considering

only macro data. By contrast, as Υd →∞, the model is forced to meet micro targets m̄(Y d).

Intuitively, this is equivalent to specifying that Σd → 0.

Alternatively interpreted, p(Y d|θ) serves an expression for the “likelihood” as invoked

in micro studies, yielding the additional interpretation of our expression as being one of

a “composite likelihood,” so discussed by Canova and Matthes (2018) with regards to the

estimation of DSGE models

p(θ|Y m, Y d) ∝ p(ym1:T |θ)Υm · p(Y d|θ)Υd︸ ︷︷ ︸
composite likelihood

· p(θ)︸︷︷︸
prior

With this formulation, we have the flexibility of asking whether, for lower specifications

of Υd, our estimated model still returns reasonable values for micro moments of interest. We

estimate our model using SMC, just as discussed in Appendix A, with the minor modification

that we utilize the “composite likelihood” in the place of the standard macro time series

likelihood.

14

References

Cai, Michael, Marco Del Negro, Edward Herbst, Ethan Matlin, Reca Sarfati, and
Frank Schorfheide, “Online Estimation of DSGE Models,” Staff Reports 893, Federal
Reserve Bank of New York 2019.

Canova, Fabio and Christian Matthes, “A Composite Likelihood Approach for Dynam-
ical Structural Models,” Staff Reports 18-12, Federal Reserve Bank of Richmond 2018.

Chang, Minsu, Xiaohong Chen, and Frank Schorfheide, “Heterogeneity and Aggre-
gate Fluctuations,” 2018.

Chopin, Nicolas, “A Sequential Particle Filter for Static Models,” Biometrika, 2002, 89
(3), 539–551.

Creal, Drew, “A Survey of Sequential Monte Carlo Methods for Economics and Finance,”
Econometric Reviews, 2012, 31 (3), 245–296.

Del Negro, Marco and Frank Schorfheide, “Forming Priors for DSGE Models (and
How it Affects the Assessment of Nominal Rigidities),” Journal of Monetary Economics,
2008, 55 (7), 1191–1208.

Geweke, John and Garland Durham, “Sequentially adaptive Bayesian learning algo-
rithms for inference and optimization,” Journal of Econometrics, 2019, 210 (1), 4–25.

Herbst, Edward, “Using the “Chandrasekhar Recursions” for Likelihood Evaluation of
DSGE Models,” Computational Economics, 2015, 45 (4), 693–705.
and Frank Schorfheide, “Sequential Monte Carlo Sampling for DSGE Models,” Journal

of Applied Econometrics, 2014, 29 (7), 1073–1098.
Kaplan, Greg, Benjamin Moll, and Giovanni L Violante, “Monetary policy according

to HANK,” American Economic Review, 2018, 108 (3), 697–743.
Kohn, Robert, Paolo Giordani, and Ingvar Strid, “Adaptive Hybrid Metropolis-

Hastings Samplers for DSGE Models,” Riksbank Manuscript, 2010.
Liu, Laura and Mikkel Plagborg-Møller, “Full-Information Estimation of Heteroge-

neous Agent Models Using Macro and Micro Data,” 2019.
Moral, Pierre Del, Arnaud Doucet, and Ajay Jasra, “An Adaptive Sequential Monte

Carlo Method for Approximate Bayesian Computation,” Statistical Computing, 2012, 22,
1009–1020.

Morf, Martin, “Fast Algorithms for Multivariable Systems.” PhD dissertation, Stanford
1974.

Smets, Frank and Raf Wouters, “Shocks and Frictions in US Business Cycles: A
Bayesian DSGE Approach,” American Economic Review, 2007, 97 (3), 586 – 606.

15

	Sequential Monte Carlo Algorithms
	Problem Statement
	Overview of SMC Algorithm
	Selection
	Mutation

	Tempering Schedules: Likelihood, Data, and Generalized
	Likelihood Tempering
	Data Tempering
	Generalized Tempering

	Adaptive Choice of Tuning Parameters
	Chandrasekhar Recursions for Fast Likelihood Computation

	Fitting Micro and Macro Data
	Augmenting Time Series Likelihood
	Assessing Trade-offs in Model Fit

